IIIT Kottayam Logo
Indian Institute of Information Technology Kottayam
भारतीय सूचना प्रौद्योगिकी संस्थान कोट्टायम
Library Catalogue
Amazon cover image
Image from Amazon.com

Machine Learning in Data Science Using Python

By: Material type: TextTextPublication details: New Delhi Dreamtech Press 2024Description: 926pISBN:
  • 9789391540463
Subject(s): DDC classification:
  • 006.312 RAO/M
Contents:
Part 1: Python for Machine Learning and Data Science Chapter 1: Fundamentals of Python Chapter 2: Datatypes in Python 19 Chapter 3: Operators in Python Chapter 4: Input and Output Chapter 5: Control Statements Chapter 6: Numpy Arrays Chapter 7: Functions in Python Chapter 8: Modules, Packages and Libraries Chapter 9: Introduction to OOPS Chapter 10: Classes, Objects and Methods Chapter 11: Data Storage in Files Chapter 12: Data Analysis Using Pandas Chapter 13 Advanced Data Analysis using Pandas Chapter 14: Data Visualization using Matplotlib Chapter 15: Data Visualization using Seaborn Part 2: Machine Learning in Data Science 747 Chapter 16: Introduction to Machine Learning Chapter 17: Exploratory Data Analysis (EDA) Chapter 18: Outliers Chapter 19: Simple Linear Regression Chapter 20: Multiple Linear Regression Chapter 21: One Hot Encoding Chapter 22: Polynomial Linear Regression Chapter 23: Ridge Regression Chapter 24: Lasso Regression Chapter 25: Elasticnet Regression Chapter 26: Logistic Regression Chapter 27: Support Vector Machine (SVM) Chapter 28: Naive Bayes Classification Chapter 29: KNN Classifier Chapter 30: Decision Trees Chapter 31: Random Forest Chapter 32: K-Means Clustering Chapter 33: Apriori Algorithm Chapter 34: Principal Component Analysis (PCA) Chapter 35: K-Fold Cross Validation Chapter 36: Model Selection Part 3: Deep Learning and AI in Data Science Chapter 37: Introduction to Deep Learning Chapter 38: Creating Neural Networks in Python Chapter 39: Tensorflow and Keras Chapter 40: Creating ANN Using Tensorflow and Keras Chapter 41: Convolutional Neural Network (CNN) Chapter 42: Recurrent Neural Network (RNN) Chapter 43: Natural Language Processing (NLP) Chapter 44: Computer Vision
List(s) this item appears in: New Arrivals
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
Reference Reference IIIT Kottayam Central Library Reference 006.312 RAO/M (Browse shelf(Opens below)) Not For Loan 3127
Books Books IIIT Kottayam Central Library General Stacks 006.312 RAO/M (Browse shelf(Opens below)) 1 Available 3128
Books Books IIIT Kottayam Central Library General Stacks 006.312 RAO/M (Browse shelf(Opens below)) 2 Available 3129
Books Books IIIT Kottayam Central Library General Stacks 006.312 RAO/M (Browse shelf(Opens below)) 3 Available 3130
Books Books IIIT Kottayam Central Library General Stacks 006.312 RAO/M (Browse shelf(Opens below)) 4 Available 3131
Total holds: 0

Part 1: Python for Machine Learning and Data Science

Chapter 1: Fundamentals of Python

Chapter 2: Datatypes in Python 19

Chapter 3: Operators in Python

Chapter 4: Input and Output

Chapter 5: Control Statements

Chapter 6: Numpy Arrays

Chapter 7: Functions in Python

Chapter 8: Modules, Packages and Libraries

Chapter 9: Introduction to OOPS

Chapter 10: Classes, Objects and Methods

Chapter 11: Data Storage in Files

Chapter 12: Data Analysis Using Pandas

Chapter 13 Advanced Data Analysis using Pandas

Chapter 14: Data Visualization using Matplotlib

Chapter 15: Data Visualization using Seaborn

Part 2: Machine Learning in Data Science 747

Chapter 16: Introduction to Machine Learning

Chapter 17: Exploratory Data Analysis (EDA)

Chapter 18: Outliers

Chapter 19: Simple Linear Regression

Chapter 20: Multiple Linear Regression

Chapter 21: One Hot Encoding

Chapter 22: Polynomial Linear Regression

Chapter 23: Ridge Regression

Chapter 24: Lasso Regression

Chapter 25: Elasticnet Regression

Chapter 26: Logistic Regression

Chapter 27: Support Vector Machine (SVM)

Chapter 28: Naive Bayes Classification

Chapter 29: KNN Classifier

Chapter 30: Decision Trees

Chapter 31: Random Forest

Chapter 32: K-Means Clustering

Chapter 33: Apriori Algorithm

Chapter 34: Principal Component Analysis (PCA)

Chapter 35: K-Fold Cross Validation

Chapter 36: Model Selection

Part 3: Deep Learning and AI in Data Science

Chapter 37: Introduction to Deep Learning

Chapter 38: Creating Neural Networks in Python

Chapter 39: Tensorflow and Keras

Chapter 40: Creating ANN Using Tensorflow and Keras

Chapter 41: Convolutional Neural Network (CNN)

Chapter 42: Recurrent Neural Network (RNN)

Chapter 43: Natural Language Processing (NLP)

Chapter 44: Computer Vision

There are no comments on this title.

to post a comment.

IIIT Kottayam Central Library,Valavoor.P.O, Kottayam-686635,Kerala | Phone: 0482-2202104, Mobile: 9961452785| library@iiitkottayam.ac.in

Visit counter For Websites

Visitor Count: 0