| 000 | 00752nam a2200181la 4500 | ||
|---|---|---|---|
| 020 | _a9788119896738 | ||
| 082 |
_a006.31 _bDUT/M |
||
| 100 | _aDutt Saikat | ||
| 100 | _aChandramauli Subrahmanian | ||
| 100 | _aDas Amit Kumar | ||
| 245 | 0 | _aMachine Learning | |
| 250 | _a2nd Ed | ||
| 260 |
_aNoida _bPearson India Education _c2025 |
||
| 300 | _a526p. | ||
| 505 | _a1 Introduction to Machine Learning 2 Preparing to Model 3 Modelling and Evaluation 4 Basics of Feature Engineering 5 Brief Overview of Probability 6 Bayesian Concept Learning 7 Supervised Learning: Classification 8 Supervised Learning: Regression 9 Unsupervised Learning 10 Basics of Neural Networks 11 Other Types of Learning" | ||
| 650 | _aMachine Learning | ||
| 942 | _cBK | ||
| 999 |
_c2774 _d2774 |
||